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Research Question 
The focus of this paper is centered on the application of deep learning architectures to process and 
interpret medical data, specifically diagnoses codes from the International Classification of 
Diseases, Tenth Revision (ICD-10). This application of deep learning is an effort to address our 
main research question, how could sequences of diagnosis codes be predicted for future patient 
visits? Within the context of Beth Israel Hospital in Boston, Massachusetts we found that of the 
patients who died while admitted between 2008 and 2019, 10% experienced cardiac arrest. Of 
those who experienced cardiac arrest, 75% of those patients passed away during their stay at the 
hospital. If we could analyze a patient’s medical history in the form of the chronological sequence 
ICD-10 diagnoses, could we accurately predict the sequences of diagnoses that might follow from 
a subsequent hospital visit in order to improve treatment options, patient health outcomes, and 
decrease mortality rates? 
 
Business Objectives  
The ability to predict this would have benefits across various stakeholders, including hospitals, 
insurance companies, and patients. Foremost, patient care would be more proactive and would 
allow for healthcare providers to intervene preemptively before severe health events (like cardiac 
arrest). This preventative approach is an improvement to the existing, reactive nature of current 
medical care. In the same regard, hospital resources would be optimized by limiting lengthy 
hospital stays that could otherwise be prevented. While hospitals would be incentivized to employ 
this approach and improve their quality of care metrics, the main objective here is to improve the 
patient experience and ultimately prevent mortality. 
 
Research Background 
 
The eight papers presented below collectively dive into the domain of healthcare and medical 
coding with a focus on leveraging advanced technologies, particularly deep learning and natural 
language processing, to improve the efficiency and accuracy of processes critical to the healthcare 
industry. These advancements aim to address challenges such as ICD-10 coding, automated 
diagnosis prediction, and cancer prognosis, showcasing the potential to revolutionize healthcare 
quality, data management, and patient outcomes. The research demonstrates a commitment to 
overcoming complexities, including language variations, data insufficiency, model 
interpretability, and biases, while emphasizing the importance of clinical integration and 
collaborations between experts in deep learning and medical fields. In summary, the research 
serves as a foundation for the integration of cutting-edge technology into healthcare, offering 
substantial potential benefits across multiple domains within the industry. 
 
CASCADENET: An LSTM Based Deep Learning Model for Automated ICD-10 Coding 
This research paper presents an innovative method for classifying ICD-10 codes within diagnostic 
strings, employing a cascading hierarchical LSTM network approach. The assignment of ICD-10 
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codes plays a pivotal role in clinical applications, but the conventional manual coding process is 
not only time-consuming but also prone to errors. Leveraging deep learning techniques, 
particularly LSTM networks, emerges as a promising solution to address these challenges. 
 
The proposed cascading hierarchical LSTM network model exhibits impressive results, achieving 
an accuracy rate of 72.05% for seven-digit ICD-10 codes and an even higher accuracy of 89.95% 
for three-digit codes. These outcomes underscore the potential of this technology in enhancing 
clinical applications across various domains. This includes refining the accuracy of ICD code 
assignments, bolstering the management of patient records, and providing valuable support for 
treatment decisions within the healthcare sector. 
 
A Deep Learning Framework for Automated ICD-10 Coding 
In the paper titled "Deep Learning Framework for Automated ICD-10 Coding," authored by 
Abdelahad Chraibi and his colleagues, an innovative approach to automating the process of 
assigning ICD-10 codes to electronic health records (EHRs) is presented. The primary objective 
of this research is to increase the efficiency and accuracy of this critical task within the healthcare 
domain. To tackle the challenges associated with extracting information from free-text entries in 
EHRs, the authors leverage the power of natural language processing (NLP) and deep learning 
methodologies. 
 
By employing these advanced techniques, their proposed framework attains an impressive average 
accuracy rate of 84.21%. This achievement holds substantial promise for enhancing the overall 
quality of healthcare services and streamlining the coding procedures. The successful 
implementation of this approach makes a significant and valuable contribution to the realm of 
medical coding, potentially revolutionizing the way diagnostic coding is performed in healthcare 
settings. 
 
A Comparison of Deep Learning Methods for ICD-Coding of Clinical Records 
The paper delves into the utilization of neural networks and deep learning techniques to classify 
medical records according to ICD codes. It underscores the importance of employing specialized 
data sources such as MIMIC-III for training and evaluating the models. The review places 
particular emphasis on the use of evaluation metrics, notably micro F1 scores, as a yardstick for 
assessing the efficacy of different approaches. 
 
The findings from a range of studies collectively suggest that deep learning models exhibit 
considerable promise in the realm of ICD code classification. Notably, techniques involving multi-
code classification and recognizing hierarchical relationships among codes contribute significantly 
to the improvement of accuracy in this context. This research points to the potential of deep 
learning to enhance the classification of medical records based on ICD codes, with the promise of 
more accurate and efficient healthcare data management. 
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Automatic ICD-10 Coding Using Prescribed Drugs Data 
In this research paper, a groundbreaking method for automated ICD-10 coding from electronic 
health records (EHRs) is introduced, leveraging the capabilities of deep learning. The article 
addresses the intricate nature of ICD-10 coding, often entailing challenges related to free-text input 
and potential ambiguities. To tackle these issues, the study harnesses a deep learning framework 
and harnesses a vast dataset comprising over 134,000 EHRs to construct a robust model. 
 
The study yields highly promising outcomes, showcasing an impressive average accuracy rate of 
84.21%. Additionally, the model achieves a precision score of 84.52%, recall of 82.61%, and an 
F1 score of 82.79%. The research focuses intently on mitigating noise and bias within the dataset, 
resulting in a significantly enhanced machine coding system performance. This pioneering 
approach demonstrates its potential to not only elevate the quality of healthcare but also greatly 
enhance the efficiency of coding processes in this domain. 
 
 
Applying Deep Learning Model to Predict Diagnosis Code of Medical Records 
This research paper delves into the pivotal task of predicting ICD-10 codes from the wealth of 
clinical notes present in medical records. To accomplish this, the study harnesses the power of 
deep learning models, with a particular focus on convolutional neural networks (CNN) and cutting-
edge natural language processing techniques, aiming to automate and optimize this intricate 
process. 
 
Through rigorous training and testing of the CNN model using clinical data, the authors have 
achieved noteworthy levels of precision, recall, and F-scores, with cardiology standing out as the 
domain with the most outstanding performance. 
 
The potential applications of this research in the realm of healthcare are nothing short of 
transformative. They encompass the automation of medical coding, early identification of disease 
risks, and the enhancement of treatment plans through the generation of data-driven insights. This 
research has the potential to spark a revolution in medical record keeping and healthcare efficiency, 
ultimately leading to improved patient outcomes and reduced costs across the healthcare 
landscape. 
 
Sequential Diagnosis Prediction with Transformer and Ontological Representation 
In this paper, the author presented SETOR, an innovative end-to-end robust transformer-based 
model designed for the task of sequential diagnosis prediction within the realm of healthcare 
analytics. Through a series of experiments conducted on real-world healthcare datasets, including 
the widely used MIMIC-III and MIMIC-IV, our research reveals that SETOR consistently 
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outperforms alternative approaches for diagnosis prediction, particularly when dealing with 
extensive datasets. 
 
SETOR employs a unique approach that involves the incorporation of medical ontology, realized 
through graph-embedding and ontological encoding, aimed at addressing the common challenge 
of insufficient data in healthcare analytics. Furthermore, it adeptly manages the irregular intervals 
between patient visits using neural ordinary differential equations (ODEs). This combination of 
medical ontology and ODEs yields substantial improvements in predictive performance and data 
handling, effectively showcasing SETOR's remarkable effectiveness within the field of healthcare 
analytics. 
 
Deep Learning in Cancer Diagnosis and Prognosis Prediction: A Minireview on Challenges, 
Recent Trends, and Future Directions 
This article delves into the complexities and challenges associated with the integration of deep 
learning techniques in the context of cancer diagnosis and prognosis prediction. It underscores the 
critical factors that must be considered, including the quality of available data, the intricacies of 
model complexity, the interpretability of results, the potential introduction of biases, and the 
seamless integration of these technologies into clinical practices. 
 
Recent developments in the field of oncology have seen the application of deep learning 
methodologies across various cancer types, facilitating advancements in diagnosis, prognosis, and 
classification. Looking ahead, the direction of research in this domain entails the development of 
more interpretable models, the incorporation of deep learning into the clinical decision-making 
process, the exploration of personalized medicine approaches, and the synergistic fusion of deep 
learning with genomics and medical imaging for more accurate cancer diagnosis and prognosis 
prediction. 
 
This article underscores the pivotal role that collaboration between experts in deep learning and 
cancer research plays in driving progress within this exciting and transformative field. 
 
 
Interpretable Deep Learning to Map Diagnostic Texts to ICD-10 Codes 
This paper introduces an innovative and interpretable deep learning method designed to associate 
diagnostic text with ICD-10 codes. The proposed approach utilizes a Convolutional Neural 
Network (CNN) to extract relevant features from the text and employs a Recurrent Neural Network 
(RNN) to capture sequential dependencies within the data. The final step involves a multi-label 
classifier responsible for predicting the appropriate ICD-10 codes for the given diagnostic text. 
 
Compared to other existing methods, this approach proves to be superior when dealing with 
multilingual ICD-10 coding, and it produces results that are interpretable. The model's output 
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demonstrates a clear alignment between the original diagnostic text and the assigned ICD-10 
codes, resulting in F-measures of 0.838 for French, 0.963 for Hungarian, and 0.952 for Italian. 
The challenges in clinical document coding are multifaceted, including language variations, the 
informality of spontaneous writing in medical records, the complexity of large-scale classification 
tasks, and the intricacies of establishing accurate alignments between text and codes. 
 
Dataset 
Our dataset for this analysis originated from the Medical Information Mart for Intensive Care 
(MIMIC-IV) database, a patient centric source from admissions at the Beth Israel Deaconess 
Medical Center in Boston, Massachusetts. MIMIC-IV draws its data from a pair of hospital-based 
database systems: an electronic health record (EHR) system implemented hospital-wide and a 
specialized clinical information system dedicated to intensive care units. This source has been 
deidentified according to the Health Insurance Portability and Accountability Act (HIPAA). While 
this data is feature rich with qualities like demographics, timestamps, and vital signs, the files were 
merged and grouped by patient, (patients, admissions, diagnoses files) to result in a simpler dataset 
appropriate for our models. The final dataset includes patient identifiers and a corresponding list 
of their ICD-10 codes. While the lists of codes for each patient represent their diagnosis history 
and are grouped logically by visit, there is no further ordering of the codes chronologically or 
otherwise. 
 
 
Descriptive Statistics 
Table 1 shows a summary of descriptive statistics of the dataset. Table 2 shows the average age of 
patients based on their ethnicity. Table 3 shows the top 10 ICD-10 codes by patient count. Figures 
1,  2, and 3 show the distribution of gender, the age distribution, and the racial distribution, 
respectively. 
 
Table 1 
Descriptive Statistics of the Dataset 

Total Number of Patients (ICD-9 and ICD-10) 180,640 

Number of Patients with ICD-10 Codes 80,213 

Number of Unique ICD-10 Codes 16,757 

Number of ICD-10 code patients who died 
while admitted 

3,360 

Number of ICD-10 code patients who died 
who had cardiac arrest in their final visit 
(cardiac arrest subpopulation) 

363 
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Total number of codes (non-distinct) in 
cardiac arrest subpopulation 

17,379 

Longest total sequence of codes across all 
visits for a cardiac arrest patient 

409 

Shortest total sequence of codes across all 
visits for a cardiac arrest patient 

6 

Maximum number of ICD-10 codes in one 
visit for a cardiac arrest patient 

39 

Minimum number of ICD-10 codes in one 
visit for a cardiac arrest patient 

1 

 
Table 2 
Average Age by Race 

Race Mean Age 

HISPANIC/LATINO - MEXICAN 48.82 

WHITE - BRAZILIAN 50.09 

ASIAN - KOREAN 52.02 

HISPANIC/LATINO - DOMINICAN 52.26 

HISPANIC/LATINO - SALVADORAN 52.40 

HISPANIC/LATINO - GUATEMALAN 52.93 

HISPANIC/LATINO - PUERTO RICAN 53.91 

HISPANIC/LATINO - HONDURAN 54.05 

BLACK/AFRICAN 54.93 

BLACK/AFRICAN AMERICAN 55.90 
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OTHER 56.39 

ASIAN 56.64 

ASIAN - ASIAN INDIAN 57.14 

HISPANIC OR LATINO 57.69 

AMERICAN INDIAN/ALASKA NATIVE 58.43 

ASIAN - SOUTH EAST ASIAN 58.44 

BLACK/CARIBBEAN ISLAND 58.58 

PORTUGUESE 59.02 

HISPANIC/LATINO - COLUMBIAN 59.58 

HISPANIC/LATINO - CENTRAL 
AMERICAN 

59.87 

BLACK/CAPE VERDEAN 59.92 

PATIENT DECLINED TO ANSWER 60.52 

SOUTH AMERICAN 60.57 

UNABLE TO OBTAIN 60.80 

WHITE 62.29 

NATIVE HAWAIIAN OR OTHER 
PACIFIC ISLANDER 

62.51 

UNKNOWN 63.03 
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HISPANIC/LATINO - CUBAN 63.07 

WHITE - OTHER EUROPEAN 63.18 

ASIAN - CHINESE 63.52 

WHITE - EASTERN EUROPEAN 65.00 

WHITE - RUSSIAN 75.71 

MULTIPLE RACE/ETHNICITY 85.00 

 
Table 3 
Top 10 ICD-10 Codes by Patient Count 

Diagnosis Code Patient 
Count 

Diagnosis Description 

I10 31521 Essential (primary) hypertension 

E785 27903 Hyperlipidemia, unspecified 

Z87891 21356 Personal history of nicotine dependence 

K219 19067 Gastro-esophageal reflux disease without esophagitis 

F329 16476 Major depressive disorder, single episode, unspecified 

F419 14223 Anxiety disorder, unspecified 

I2510 13438 Atherosclerotic heart disease of native coronary artery 
without angina pectoris 

N179 13394 Acute kidney failure, unspecified 

Y929 11706 Unspecified place or not applicable 
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E119 10302 Type 2 diabetes mellitus without complications 

 
 
 
Figure 1 
Gender Distribution 

 
Figure 2 
Age Distribution 
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Figure 3 
Racial and Ethnic Distribution 
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Methodology 
 
Overview 
Two models were used for the analysis. The first was a sequence-to-sequence encoder decoder 
GRU-based model with a Bahdanau attention mechanism, implemented with Pytorch and Jupyter 
Notebooks. This model was a text-generative AI model which used prior sequences of ICD-10 
codes to output the next predicted sequences of ICD-10 codes. The second model was a 
Bidirectional Encoder Representation Transformer (BERT) model, also implemented in Pytorch 
and Jupyter Notebooks. This is an encoder only model with multi-headed attention and positional 
encoding which classifies if a sequence of ICD-10 codes follows the previous sequence of ICD-
10 codes, essentially treating diagnosis prediction as a binary text classification problem. 
 
Data Preprocessing 
Extensive data preprocessing was conducted. Four CSV files (Patients, Diagnoses, Diagnosis 
Descriptions, and Admissions) from the original MIMIC-IV database were joined on multiple keys 
(subject_id, hadm_id, icd_code) and sorted by date and sequence number in order to create a 
chronological order to the ICD-10 codes. This joined dataframe which originally contained 180, 
640 patients was filtered for just patients with ICD-10 codes (ICD-9 codes are also present), 
reducing the sample to 80,213 patients. Next, a list of patients who died on their last visit was 
created, and the dataframe was filtered on this list to extract all of the records for these patients, 
reducing the population to 3,360 patients. Next, strings of ICD-10 codes were created for each 
subject starting from their first visit to their last visit. A new subpopulation was found for just 
those patients who experienced cardiac arrest in their final visit, classified under ICD-10 codes 
I462, I468, and I469, further reducing the population sample to 363 patients. A single list of two 
string elements was then created for each patient, where all of the codes until the second to last 
visit comprised the first element in the list, and all of the codes from the last visit comprised the 
second element in the list. Start of Sentence (SOS) and End of Sentence (EOS) tokens were 
appended to the start and end of the strings and the max sequence length was set to 250 characters. 
 
['I63132 J189 J690 E43 N179 G92 E870 G8191 R1310 G20 R4701 I10 D638 F0280 E785 H9193 
E860 Z6820 R918 R197 H409 Z781 R0902 J690 E43 G20 I69391 Z931 Z681 I10 E785 R1310', 
'J189 J9691 E43 E870 G92 G20 R1310 I69351 I69391 E46 I469 I10 E785 J988'] 
 
seq2seq Methodology 
The seq2seq model implemented in Pytorch comprised Encoder and Decoder Recurrent Neural 
Networks (RNNs), specifically GRUs, along with a Bahdanau Attention mechanism in the decoder 
layer which incorporates an additional context vector into the final output. An 80/20 training test 
split was created using sci-kit learn and dataloader libraries. Testing and training modules were 
created, a learning rate scheduler was added, and loss was used as an evaluation metric as well as 



 
13 

visual inspection of the output sequences of codes. The training parameters for Model 1 and Model 
2 are listed in Table 4 below. 
 
Table 4 
Training Parameters for seq2seq Models 

 seq2seq Model 1 seq2seq Model 2 

Learning Rate 0.0001 0.001 

Number of Training Epochs 20 20 

Weight Decay 1e-6 1e-5 

Optimizer Adam Adam 

Step Size 20 30 

Gamma 0.8 0.95 

Dropout Rate 0.1 0.1 

 
BERT Methodology 
The BERT model implemented in Pytorch comprised Encoder-only architecture, multihead 
attention, positional embedding, normalization and a feed forward layer. An 80/20 training test 
split was created using sci-kit learn and dataloader libraries. Testing and training modules were 
created. Loss, perplexity, and accuracy scores were used as evaluation metrics and the losses were 
used as evaluation metrics. The training parameters for Model 1 and Model 2 are listed in Table 
5. 
 
Table 5 
Training Parameters for BERT Models 

 BERT Model 1 BERT Model 2 

Dimensions 768 768 

Number of Layers 12 12 

Number of Attention Heads 12 24 

Hidden Layers 768*4 768*4 

Dropout Rate 0.1 0.2 
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Optimizer Adam Adam 

Learning Rate 1e-4 1e-5 

Weight Decay 0.01 0.001 

Betas (0.9, 0.999) (0.9, 0.999) 

Warm Up Steps 10,000 1,000 

 
 
Results 
 
The results of the models are presented in a structured manner. In the Seq-2-Seq model, each set 
of sequences consists of an input sequence (marked as '>'), the actual target sequence (marked as 
'='), and the generated output sequence (marked as '<'). This format allows for a clear 
understanding of the model's performance in sequence generation. 
 
For the BERT model, the results show a pattern as the number of training epochs increases. As the 
epochs progress, the model's losses consistently decrease, which is a positive indicator of 
learning and optimization. Conversely, the accuracy of the model fluctuates periodically as the 
epochs increase, which can be visually observed through graphical representations. One notable 
trend in the BERT model's performance is the reduction in perplexity scores. Initially starting at 
4, the perplexity score steadily decreases to 1.3. This decreasing perplexity indicates that the model 
is learning and performing effectively in generating sequences. This trend is a valuable insight into 
the model's progress and its ability to capture complex patterns in the data. 
 
Seq-2-Seq Model-1 
Reading lines... 
Read 140 sentence pairs 
Trimmed to 87 sentence pairs 
Counting words... 
Counted words: 
prior 716 
last 733 
0m 3s (- 1m 12s) (1 5%) 6.8819 
> K9189 N360 Y842 Y92230 Z21 Z8546 F17210 
= A047 K55029 D65 J9601 R6521 K7200 A419 N179 E872 M79A3 D62 F05 N360 Y842 Z66 
Z515 Z21 I468 I10 E875 E162 E8339 E8351 F17210 Z8546 Z933 
< T50995A Z923 J9690 G936 A0471 B690 J984 I9751 B690 I9751 K560 Y92000 Z992 E1122 
E1122 I272 A408 A4101 Z833 L89610 J939 E1169 Z85038 F05 D709 M4712 I428 A408 



 
15 

Z6825 I25810 Z8701 R402322 C715 Z8572 L89610 L89153 R0489 K810 R1310 A408 I96 
H5462 T8119XA Z1611 N183 N183 I2699 R1310 J441 F79 Y92019 S2243XA Y92019 H409 
H409 G936 A0471 B690 J984 T508X5A I272 I2510 L98429 K651 K651 K651 R9401 B258 
I69122 Z95810 Z6825 E039 D696 Z8701 K56609 R402322 B690 J984 I9751 B690 I9751 K560 
Y92000 J15211 L02213 Y92234 Y92234 J90 Z923 J9690 R64 C250 M79A3 M79A3 E8809 
B690 J984 I9751 B690 J984 I9751 B690 I9751 K560 Y92000 Z992 E1122 E1122 I272 A408 
A4101 Z833 L89610 J939 E1169 Z85038 F05 D709 M4712 I428 A408 Z6825 I25810 Z8701 
R402322 C715 Z8572 L89610 L89153 R0489 K810 R1310 A408 I96 H5462 T8119XA Z1611 
N183 N183 I2699 R1310 J441 F79 Y92019 S2243XA Y92019 H409 H409 G936 A0471 B690 
J984 T508X5A I272 I2510 L98429 K651 K651 K651 R9401 B258 I69122 Z95810 Z6825 E039 
D696 Z8701 K56609 R402322 B690 J984 I9751 B690 I9751 K560 Y92000 J15211 L02213 
Y92234 Y92234 J90 Z923 J9690 R64 C250 M79A3 M79A3 E8809 B690 J984 I9751 B690 J984 
I9751 B690 I9751 K560 Y92000 Z992 E1122 E1122 I272 A408 A4101 Z833 L89610 J939 
E1169 Z85038 F05 D709 M4712 I428 A408 Z6825 I25810 Z8701 R402322 C715 Z8572 
L89610 L89153 R0489 K810 R1310 A408 I96 H5462 T8119XA Z1611 N183 N183 I2699 
R1310 J441 F79 Y92019 S2243XA Y92019 H409 H409 G936 A0471 B690 J984 T508X5A 
I272 I2510 L98429 K651 
 
Seq-2-Seq Model-2 
 
Reading lines... 
Read 140 sentence pairs 
Trimmed to 87 sentence pairs 
Counting words... 
Counted words: 
prior 716 
last 733 
0m 4s (- 1m 31s) (1 5%) 6.8143 
> G935 G950 I252 N400 V499XXS Z9181 
= G935 J9600 G9589 D62 Z66 R1310 Q758 I469 D72829 N401 R338 Z87891 
< I5023 Y838 Z923 I4581 R34 R471 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 
J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 
J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 
J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 
J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 
J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 
J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 
J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 
J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 
J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 
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J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 
J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 
J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 
J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 J704 
 
BERT Model-1 
EP_train:0:  33%|| 1/3 [00:09<00:18,  9.46s/it] 
{'epoch': 0, 'iter': 0, 'avg_loss': 1.8296449184417725, 'avg_acc': 56.25, 'loss': 
1.8296449184417725} 
EP_train:0: 100%|| 3/3 [00:18<00:00,  6.29s/it] 
EP_train:1: 100%|| 3/3 [00:19<00:00,  6.47s/it] 
EP1, train:             avg_loss=1.91853133837382,             total_acc=44.927536231884055 
Precision: 0.5000 
Recall: 0.6667 
F1-Score: 0.5714 
EP_train:19:  33%|| 1/3 [00:08<00:17,  8.61s/it] 
{'epoch': 19, 'iter': 0, 'avg_loss': 0.5541626214981079, 'avg_acc': 56.25, 'loss': 
0.5541626214981079} 
EP_train:19: 100%|| 3/3 [00:18<00:00,  6.19s/it] 
EP19, train:             avg_loss=0.5544461806615194,             total_acc=49.27536231884058 
Precision: 0.6000 
Recall: 1.0000 
F1-Score: 0.7500 
EP_test:19: 100%|| 1/1 [00:01<00:00,  1.60s/it] 
{'epoch': 19, 'iter': 0, 'avg_loss': 0.49049076437950134, 'avg_acc': 50.0, 'loss': 
0.49049076437950134} 
EP19, test:             avg_loss=0.49049076437950134,             total_acc=50.0 
Precision: 0.5000 
Recall: 1.0000 
F1-Score: 0.6667 
EP19, test: perplexity=1.4541428089141846 
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BERT Model-2 
EP_train:0:  33%|| 1/3 [00:18<00:37, 18.58s/it] 
{'epoch': 0, 'iter': 0, 'avg_loss': 0.10677383840084076, 'avg_acc': 56.25, 'loss': 
0.10677383840084076} 
EP_train:0: 100%|| 3/3 [00:40<00:00, 13.44s/it] 
EP0, train:             avg_loss=0.09691423674424489,             total_acc=46.3768115942029 
Precision: 0.6000 
Recall: 1.0000 
F1-Score: 0.7500 
EP_test:0: 100%|| 1/1 [00:02<00:00,  2.96s/it] 
{'epoch': 0, 'iter': 0, 'avg_loss': 0.08213409781455994, 'avg_acc': 38.88888888888889, 'loss': 
0.08213409781455994} 
EP0, test:             avg_loss=0.08213409781455994,             total_acc=38.888888888888886 
Precision: 0.3889 
Recall: 1.0000 
F1-Score: 0.5600 
EP19, test:             avg_loss=0.00017938799283001572,             total_acc=55.55555555555556 
Precision: 0.5556 
Recall: 1.0000 
F1-Score: 0.7143 
EP19, test: perplexity=1.0001143217086792 
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Conclusions 

Parameter tuning of seq2seq model 2, especially increasing the step size and gamma of the learning 
rate scheduler and increasing the weight decay of the learning rate, resulted in moderately lower 
training and testing loss compared to seq2seq model 1. It predicted legitimate sequences of codes, 
but they were overall not the true sequences and further training is required. Parameter tuning of 
BERT model 2, especially the decrease in warm up steps, increase in attention heads, and increase 
in dropout rate, resulted in improvement over BERT model 1 with significantly lower loss and 
perplexity. However, it also had slightly lower F1 scores compared to the first model. Further 
training, again, is required. 
 
Through our research, model development, model implementation, and model evaluation we have 
explored the capacity of seq2seq with GRU and Attention, alongside Encoder BERT models, to 
predict future ICD-10 diagnosis codes. By combining natural language processing techniques with 
traditional methods, we successfully generated sequences of ICD-10 codes as well as binary 
predictions as output from the models. While the respective loss values for both sets of models 
were minimized across progressive epochs, the other evaluation metrics, specifically accuracy, 
give us pause as to the efficacy of the implementation in a real-world business or medical context. 
For instance, while the decreasing perplexity scores for the BERT models during testing indicate 
the model is understanding the context of the medical codes, the varying levels of accuracy would 
not satisfy benchmarks or standards for healthcare providers. Therefore, this model shows the 
potential to achieve the stated business objectives of predicting sequences of ICD-10 codes and 
thus improving patient health outcomes and decreasing hospital costs, but it needs further 
development before it is ready for deployment. 
 
 
Research Contributions and Novelty 
The seq2seq model is the first generative AI model which starts with prior sequences of ICD-10 
codes and generates the next sequences of predicted ICD-10 codes at a patient level. In addition, 
the transformer model is the only BERT model to our knowledge which classifies next ICD-19 
codes, not just disease groupings like the SETOR model, therefore showing a greater level of 
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diagnosis specificity. Overall, these models treat diagnosis predictions from a novel framework of 
natural language processing (NLP) instead of more traditional methods of binary and multiclass 
classification. 
 
Limitations and Future Research 
One of the major limitations of the MIMIC-IV dataset is that it has intervisit (between hospital 
visit) order chronology but no intravisit (within hospital visit) order chronology. This is because 
for every hospital visit, we know when they are admitted, and when they are discharged, and there 
are no other timestamps in between. This means for example that a patient can be admitted to the 
hospital for two weeks, acquire 40 diagnoses and the codes will be input into the record for that 
time period with no discernible order. Most visits however or short, only last a day, but this still 
nonetheless inherently limits the accuracy of the models. In addition, the longitudinal nature of 
this data is limited and biased, since it only represents critical events of patients at a single hospital. 
The majority of patients have complex medical histories where they are visiting many different 
doctors and facilities for a long period of time on an outpatient and inpatient basis for chronic as 
well as acute conditions. 
 
Future research should employ true claims and electronic health records (EHR) data which would 
have every code associated with a specific date and time and all the facilities a patient visited in 
order to hopefully construct a more accurate and complete sequence of diagnoses. In addition, a 
larger, more homogeneous sample with longer, full sequences, should be used, such as all 
outpatient and inpatient visits of MS patients in the two years before their MS diagnosis so that 
stronger patterns would be present in the data. Multimodal data could be used, such as also 
incorporating CPT codes. Finally, the temporal aspect of the data should be addressed - there are 
uneven intervals between visits, and it is important to be able to predict not just what will happen 
next but when it will happen. 
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